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Summary
Nitric oxide has been shown to have important physiological regulatory roles, i. e, vasodila-
tion, neurotransmitter release, etc. Now, we review its role as an antibacterial and antiviral
agent. Nitric oxide has also been identified as an important factor in the development of non-
specific immunity. And accordingly, nitric oxide synthase (NOS), the catalytic enzyme produc-
ing nitric oxide, is a key element in the protective activities of nitric oxide. The expression of
inducible (i) NOS is regulated by cytokines. iNOS-derived nitric oxide was found to contribute
to both early and late phases of antibacterial activity. Enzymes, such as proteases (reverse tran-
sciptases, and ribonucleotide reductase, etc.) containing cysteine residues, appear to be targets
for nitric oxide nitrosylation, as well as viral-encoded transcription factors that are involved in
viral replication. It would appear that this multifunctional signaling molecule is not only
involved with signaling between cells, it also appears to maintain the immediate environment
free of microbial agents.
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NITRIC OXIDE AS AN ANTIBACTERIAL AGENT

The physiological roles of nitric oxide (NO) are numer-
ous [1]. A great deal of recent research has centered on
the examination of its antibacterial and antiviral activi-
ties. Investigations into the effects of exogenous NO on
pulmonary infections have proved promising. In addi-
tion, this can also suggest a possible use of inhaled NO
therapy in the future. Inhaled NO has produced a
marked reduction in bacterial load of rats that had been
infected with Psuedomonas aeruginosa pneumonia, as well
as decreased pulmonary leukocyte infiltration in vivo [2]
(Table 1). In vitro experimentation has also shown that
exposure to exogenous NO results in selective bacterio-
cidal actions. Extracellular Mycobacterium tuberculosis
were killed, in both a dose- and time-dependent man-
ner, by low (< 100 ppm) concentrations of NO for short
periods of time(24 h or less) [3], while Staphylococcus
aureus and group B Streptococcus (GBS) were significantly
affected by greater doses (120 ppm) as compared to
controls [4]. In cystic fibrosis patients, Burkholderia (for-
merly Psuedomonas) cepacia is an important pulmonary
pathogen that survives in the lung. Research has shown
that NO and H2O2 together were a potent bactericidal
combination against B. cepacia, decreasing the bacterial
count by >1000-fold over 75 minutes [5]. Smith, Green
et al suggest that the lack of expression of inducible
nitric oxide synthase (iNOS) in the airway epithelial cells
of CF patients, and, therefore, the lack of NO in these
same patients could contribute to the survival of this
pathogen [5].

NO donors have also been shown to have inhibitory
effects on selective bacterial strains. NO derived from S-
nitroso-acetyl-penicillamine (SNAP) had inhibitory
properties against bacterial fish pathogens Aeromonas
salmonicida, Renibacbacterium salmonarum and Yersinia
ruckeri, while peroxynitrite had no effect [6] (Table 1).

Antiviral effects of NO were demonstrated by a NO
donor, glycerin trinitrate (GTN), against viral haemor-
rhagic septicemia virus (VSHV), a fish rhabdovirus.
VSHV replication was significantly inhibited [7].
Another compound, (Z)-1- [N-(2-aminoethyl)-N-(2-
ammonioethyl)amino]diazen-1- ium-1, 2-diolate (DETA-
NO), which releases NO at a predictable rate, was
demonstrated to inhibit representative strains of Candi-
da albicans, C. krusei, C. parapsilosis, C. tropicalis, C. glabra-
ta, and C. dubliniensis (C. parapsilosis and C. krusei, being
most sensitive), while DETA-NO combined with azoles
(ketoconazole, fluconazol, and miconazole) proved to be
synergistic [8]. Furthermore, examinations have shown
that acidified nitrite, which generates NO under various
conditions, has also proved to be a successful antimicro-
bial agent. The effects of nitrite under acidic conditions
were demonstrated against cariogenic bacteria (Strepto-
coccus mutans, Lactobacillus casei, and Actinomyces naes-
lundii) [9], periodontal bacteria (Fusobacterium nucleatum,
Eikenella corrodens and Porphyromonas gingivalis) [10],
dermatophyte fungi, Candida and bacterial skin
pathogens (Trichophyton mentagrophytes, T. rubrum, Candi-
da albicans, Staphylococcus aureus and Propionibacterium
acnes) [11], and the viral molluscum contagiosum [12].

Interestingly, Scutellaria baicalensis (SB), a member of the
mint family, and a plant used in traditional Chinese
herbal medicine, is purported to have antibacterial and
antiviral properties. Researchers examined the effects of
SB on the production of NO and have found that the
marked increase in NO production that was observed in
rIFN-gamma-primed mouse peritoneal cells was the
result of SB-induced TNF-alpha secretion [13]. Another
plant extract, Phyllanthus tenellus, is also traditionally
used for the treatment of viral, bacterial and parasitic
infections; and, it was shown that, in vitro, a concentra-
tion of 100 microg/ml fresh extract stimulated a signifi-
cant NO production (P< or =0. 05) in all assays and in
10 and 50 mg/kg fresh extract which was injected twice
intraperitonealy primed macrophages in vivo [14]. Actu-
ally, much research has centered on the interactions of
NO and the levels of various cytokines involved in
immune responses [15].

NITRIC OXIDE AS AN ANTIVIRAL AGENT

NO, from the NO donor 3-(2-hydroxy-2-nitroso-1-
propyl-hydrazino)-1-propanamine (NONOate), was
shown to inhibit granulocyte macrophage colony-stimu-
lating factor (GM-CSF), which was induced by exposure
of human bronchial epithelial cells to human rhinovirus
(HRV), a common cause of exacerbation in asthma.
Hence, demonstrating an important anti-inflammatory
role of NO in this viral infection [16] [17]. HRV infec-
tions in vitro, and in vivo, were also shown to induce
increased epithelial NOS2 expression, which would
indicate that increased production of NO plays an
important part in host defense [18]. Hepatitis B virus
(HBV) replication was inhibited by IFN-gamma in HBV
transgenic mice during infection with Schistosoma man-
soni [19] through what appears to be a NO mediated
manner. Another experiment showed the same effects
against HBV: without the Schistisoma mansoni infection,
as well as a NO-mediated inhibition against lymphocytic
choriomeningitis virus (LCMV). This was demonstrated
by an increased replication of LCMV in the livers of
iNOS deficient mice as compared to controls [20]. NO,
derived from NOS2, was also found to modulate the

Bacteria Viruses Other
microorganisms

Psuedomonas aeruginosa 

Salmonella

Klebsiella pneumoniae

Escherichia coli

Streptococcus mutans

Staphylococcus aureus
group B Streptococcus

Lactobacillus casei

Mycobacterium
tuberculosis

Hepatitis B virus (HBV)
Herpes simplex

virus (HSV)
Coxsackievirus

lymphocytic choriomenin-
gitis virus (LCMV)
Marek’s disease

virus (MDV)
Murine cytomegalovirus

Rhabdovirus
Viral haemorrhagic
septicemia virus

bovine herpesvirus 1
(BHV-1)

Candida albicans

Table 1. Bacteria and viruses affected by nitric oxide.
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cytokine profile within mice infected with Mycabacterium
avium, and to regulate the number, size and cellular
composition of M. avium-induced granulomas indepen-
dently of antibacterial effects [21].

NO has also been identified as an important factor in
the development of non-specific immunity [22], and
accordingly, NOS, as the catalytic enzyme producing
NO, is a key element in the protective activities of NO.
The expression of iNOS is regulated by cytokines.
iNOS-derived NO was found to contribute to both early
and late phases of antibacterial activity against Salmo-
nella, with peroxynitrite (ONOO–), in addition to reac-
tive oxygen species, involved in the early oxidative bac-
terial killing, followed by a sustained period of
nitrosative chemistry limiting bacterial growth [22]. In
that same experiment, IFN-gamma was found to
enhance antibacterial activity by increasing NO produc-
tion [23]. With regard to constitutive NO, it has been
suggested that low levels negatively regulate the expres-
sion of IFN alpha and beta in mouse peritoneal
macrophages, and that NO could act as a homeostatic
agent for these pathways [24].

Japanese encephalitis virus infection was shown to
increase NOS/iNOS activity in the brains of treated
mice, and pre-treatment with a NOS inhibitor, L-
NMMA, decreased the survival rates of the infected
mice, furthering the evidence of the protective actions
of NOS [25]. When infected with murine cytome-
galovirus, the peritoneal macrophages of NOS2 defi-
cient mice showed a lower antiviral activity, while non
deficient mice who were treated with a selective NOS2
inhibitor showed even greater decrease in antiviral
activity, both resulting in higher mortality and greater
MCMV replication [26].

Regarding NO and viruses in general, mice deficient in
iNOS were susceptible to herpes simplex virus-1 infec-
tion and they also exhibited a delayed clearance of the
virus from dorsal root ganglia [27]. Furthermore,
macrophage NO is implicated in resistance to a number
of viruses, including ectromelia virus and vaccinia virus,
see [28]. Gamma interferon-induced production of NO
also inhibited growth of murine hepatitis virus type 3 in
a murine macrophage cell line (RAW 264. 7) an action
also found with the NO donor SNAP [28]. NO has also
been implicated in an anti-hepatitus C infection [29]. In
support of these observations the antiretroviral agent
(R)-9-(2-phosphonomethoxypropyl)adenine stimulates
cytokine and NO production [30]. In HIV-1-associated
dementia iNOS levels were elevated and coincided with
increased expression of the HIV-1 coat protein gp41
that has been shown to induce iNOS in primary cultures
of mixed rat neuronal and glial cells [31]. Bukrinsky
and colleagues [32] found NO expressed in HIV-1-
infected monocyte cultures. In another report, Her-
mann and colleagues (1997) [33] found that infection of
human monocyte-derived macrophages with HIV-1 did
not seem to induce detectable NO release or iNOS
mRNA accumulation.

This conflict may be better understood within the
framework of experimental design. For example, super-
oxide (O2. -) and NO metabolites may also cause harm
to the host besides exerting their antimicrobial and
antiviral actions. Low levels of these agents and their
metabolites can also facilitate viral replication because of
their mitogenic effects on cells (see [34]). Additionally,
most viruses stimulate their host cells since they grow
better in proliferating cells (see [34,35]. Indeed, we have
demonstrated that gp120 may exert such a stimulatory
influence in diverse cells, suggesting that its immune
and vascular cell activation is intentional and comprises
an important step in the infection process [36–38]. Fur-
thermore, universal mechanisms in this regard probably
are not found and variation does exist. Additionally,
these studies did not measure or take cNOS stimulated
NO into consideration. However, there is general agree-
ment on the point that NO may exert antiviral actions
on particular viruses.

It was also shown that myocarditis in mice infected with
Coxsackie group B virus (CVB) lead to an increased
expression of iNOS mRNA in inflammatory cells, as
compared to controls, suggesting that high NO produc-
tion is part of the host immune defense as an antiviral
agent [39]. Bovine peripheral blood mononuclear cells
(PBMCs) and monocytes were demonstrated to produce
iNOS-derived NO in response to stimulation by bovine
herpesvirus 1 (BHV-1), LPS and concanavalin A (Con
A), and the NO was found to exhibit antiviral activity
toward the BHV-1 [40]. As can be seen, the up-regula-
tion of NO production in response to viral and bacterial
infections has been documented numerous times.
Another example can be seen in an experiment in
which Japanese encephalitis virus (JEV) and JEV-
induced macrophage derived neutrophil chemotactic
factor (MDF) both induced increased NO production in
splenic macrophages of mice and the MDF stimulated
macrophages inhibited virus replication with high levels
of NO production [41]. In addition to its antibacterial
and antiviral properties, NO has also been shown to
produce gene activation. In Drosophila melanogaster,
NO introduced into the hemocoel caused activation of
the gene encoding the antimicrobial peptide Diptericin
[42]. This type of reaction has also been documented in
the activation of neutral endopeptidase [43].

POSSIBLE MECHANISM AND IMPLICATIONS

The question still remains as to how this NO „killing“
mechanism is working. Since viral life cycles are depen-
dent upon proteases that cleave polypeptides into small-
er individual units, it has been suggested that NO-medi-
ated S-nitrosylation of viral and host macromolecules
may be a possible answer to this question [44]. They
have identified enzymes (such as proteases, reverse
transciptases, and ribonucleotide reductase) containing
cysteine residues as targets for NO nitrosylation, as well
as host and viral-encoded transcription factors that are
involved in viral replication [44]. Another group docu-
mented NO inactivating the Coxsackie virus protease
3C by S-nitrosylating the cysteine residue in the active
site of the protease thereby inhibiting its activity and
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interrupting the viral life cycle [45]. This effect has even
been documented on human immunodeficiency virus
type 1 (HIV-1) protease (HIV-PR), which has two cys-
teine residues located near the surface of the protease
[46]. The researchers found that treatment of HIV-PR
with different NO congeners resulted in loss of its pro-
teolytic activity [46]. Their findings that sodium nitro-
prusside inhibited HIV-PR up to 70% and SNAP com-
pletely inhibited the protease within 5 min of treatment
could possibly lead to new role for NO in mediating
resistance to HIV-1 infection [46].
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